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Abstract—We present an optimal sidelobe blanker (SLB) de-
tector for Swerling-1 and Swerling-0 targets and compare the
performances of the suggested detector with the classical Maisel
SLB structure. The optimal SLB detector depends on the signal
to noise ratio (SNR) and jammer to noise ratio (JNR) values and
may not be practical for implementation in many applications.
The goal of this work is to compare the Maisel structure with
the optimal detector which utilizes additional information on
target and jammer and assesses the performance gap between
two systems. Numerical results show that the performance of
Maisel SLB structure is close to the optimal detector under very
practical conditions. 1

I. I NTRODUCTION

In the conventional radar systems, the interfering signals
intercepted from the antenna sidelobes can cause problems
such as false target detection and poor tracking accuracy etc.
To mitigate the effects of sidelobe signals, a sidelobe blanking
(SLB) architecture is proposed by Maisel in [1]. In the Maisel
structure, two receiving channels are used. The first one is
the main channel whose antenna has high gain in main beam
and low gain in the sidelobes. The second channel is called
the auxiliary channel which has an omnidirectional patternand
has flat gain slightly greater than the sidelobe gain of the main
antenna as shown in Fig. 1.

The blanking signal is generated when the ratio of the
auxiliary channel output(v) to main channel output(u), that
is (v/u), is greater than blanking thresholdF as shown in Fig.
2. When the ratiov/u exceeds thresholdF , the main channel
is blanked. An erroneous blanking of the main channel results
in a loss of detection probability.

It is easy to note from Fig. 1 that the gain of the omnidirec-
tional antenna(ω2) should satisfy the conditionω2/δ2 = β2 ≥
1 for a satisfactory operation. This condition can be easily
justified by noting that an interfering signal in the sidelobe,
sayu; produces an auxiliary channel output ofβ2u. To blank
this signal, the condition ofβ2 ≥ F is trivially required, [1].
A similar consideration for the main channel, that is in order
not to blank the main beam signal, the condition ofω2 ≤ F
is also necessary, [1].

The classical SLB systems are thoroughly studied in the
literature. In [2], Farina examines the classical SLB system in

1This version of the paper contains some minor corrections over the version
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Fig. 1. Gain patterns of main and auxiliary antenna in SLB system

detail and derives the probability of blanking the jammer in
sidelobe (Pb), the probability of blanking the target in main
beam (Ptb), the probability of false target due to jammer in
sidelobe (Pft) for Swerling-0 target model. In [3], Farina and
Gini extends the aforementioned probability calculation to the
Swerling-1 targets.

The classical SLB model is widely accepted and has been
utilized in many systems. However, to the best of our knowl-
edge, an optimality property of the classical SLB structure,
in some sense, is not given in the literature. In [4], it is
noted that the SLB systems derived from Neyman-Pearson
likelihood ratio test (LRT) is hard to implement in real time
and Maisel structure is suggested as a substitute with a simple
implementation and an effective result.

In this work, we discuss an optimal SLB system for
Swerling-1 and Swerling-0 targets and compare the perfor-
mance of the optimal detector with the classical Maisel struc-
ture under different operating conditions. Numerical results
suggest that the classical SLB system is close to the optimal
system under highly practical operating conditions. Hence, the
present work can be considered as a justification for the good
performance of the Maisel structure.

II. PROPOSEDSIDELOBE BLANKING SYSTEM FOR

SWERLING-1 TARGETS

Let s̃ and r̃ denote the complex valued matched filtered
outputs of the main and auxiliary channels at a specific time.



Fig. 2. Basic block diagram of classical SLB system

We have three hypotheses to choose: noise only(H0), target
in main lobe and no jammer in sidelobe(H1), jammer in
sidelobe and no target in main lobe(H2):

H0 :

{

s̃ = w̃s

r̃ = w̃r

, H1 :

{

s̃ = ã+ w̃s

r̃ = ωã+ w̃r

, H2 :

{

s̃ = c̃+ w̃s

r̃ = βc̃+ w̃r

(1)

In (1), ã ∼ CN (0, σ2
a) andc̃ ∼ CN (0, σ2

c ) indicate Swerling-1
target models [5] and̃ws ∼ CN (0, σ2) and w̃r ∼ CN (0, σ2)
denote receiver noise in main and auxiliary channels, re-
spectively. Here,CN (0, σ2) represents zero mean complex
circularly symmetric Gaussian random variables having the
variance ofσ2. Note that by jammer, we mean an interfering
target in sidelobe.

The parametersω andβ appearing in (1) are the sidelobe
gain of main antenna and gain of the auxiliary antenna (also
see Fig. 1). Signal-to-noise (SNR) and jammer-to-noise ratios
(JNR) are defined as:

SNR=
E[|ã|2]

E[|w̃s|2]
=

σ2
a

σ2
= γs

JNR=
E[|c̃|2]

E[|w̃s|2]
=

σ2
c

σ2
= γj

We note that the random variablesr̃ and s̃ are correlated.
The correlation under different hypotheses is as follows:
E[r̃s̃∗;H1] = ωσ2

a and E[r̃s̃∗;H2] = βσ2
c . We introduce

x =
[

s̃ r̃
]T

as a two dimensional Gaussian random vector
with the correlation matrixCi as follows:

Ci = E[xxH ;Hi] =

[

E[|s̃|2;Hi] E[s̃r̃∗;Hi]

E[s̃∗r̃;Hi] E[|r̃|2;Hi]

]

, i = {1, 2}

The probability density function (pdf) ofx underHi becomes

fx(x;Hi) =
1

π2|Ci|2
exp

(

−xHC
−1
i x

)

, i = {1, 2}

and the covariance matricesC1 and C2 can be given as
follows:

C1 = σ2

[

γs + 1 ωγs
ωγs ω2γs + 1

]

, (2a)

C2 = σ2

[

γj + 1 βγj
βγj β2γj + 1

]

. (2b)

The likelihood ratio test to discriminateH1 andH2 hypotheses
can be written as:

Λ(r̃, s̃) =
fx(x;H2)

fx(x;H1)

H2

≷
H1

ζ. (3)

Taking the logarithm ofΛ(r̃, s̃) and ignoring non-data depen-
dent terms, we reach the following test [6]:

d = xH(C−1
1 −C−1

2 )x
H2

≷
H1

η (4)

The test consists of quadratic forms of complex Gaussian
random variables.

The statistic ofxHQx is important in several telecommu-
nication applications [7]–[10]. Following the notation of[7]
and [9], we define theQ matrix

Q , σ2
(

C−1
1 −C−1

2

)

=

[

A C
C B

]

, (5)

whose entries can be calculated through elementary algebraas

A =
γs ω

2 + 1

γs ω2 + γs + 1
−

γj β
2 + 1

γj β2 + γj + 1
, (6a)

B =
γs + 1

γs ω2 + γs + 1
−

γj + 1

γj β2 + γj + 1
, (6b)

C = −
γs ω

γs ω2 + γs + 1
+

β γj
γj β2 + γj + 1

(6c)

The decision statisticsd in (4) can be expressed as follows:

d = xHQx = A|s̃|2 +B|r̃|2 + 2CRe(r̃s̃∗) (7)

and its pdf can be written as follows, [7] and [8]:

fd(d) =



















ab

a+ b
exp (−ad) d ≥ 0

ab

a+ b
exp (bd) d < 0

(8)

The parametersa and b appearing in (8) are defined through
a rather complicated functions ofµr̃s̃ andr, [9]:

a =

√

r2 +
1

4(µr̃r̃µs̃s̃ − |µs̃r̃|2)(|C|2 −AB)
− r (9a)

b =

√

r2 +
1

4(µr̃r̃µs̃s̃ − |µs̃r̃|2)(|C|2 −AB)
+ r (9b)



whereµr̃s̃ =
1
2E[r̃s̃∗] and

r =
Aµr̃r̃ +Bµs̃s̃ + C∗µ∗

s̃r̃ + Cµr̃s̃

4(µr̃r̃µs̃s̃ − |µs̃r̃|2)(|C|2 −AB)
.

Threshold Calculation: The thresholdη for the Neyman-
Pearson test can be easily calculated from (8). For a given
target blanking probabilityPtb (declaringH2 when H1 is
true), the thresholdη appearing inPtb = Pr(H2|H1) =
∫∞

η
fd|H1

(x)dx can be written as follows:

η =



















−
1

a
ln

[(

a+ b

b

)

Ptb

]

Ptb ≥
b

a+ b

1

b
ln

[

−

(

a+ b

a

)

(Ptb − 1)

]

Ptb ≤
b

a+ b

(10)

Blanking Probability Calculation: Using the thresholdη,
one can find the probability of blanking the jammer in sidelobe,
Pb = Pr(H2|H2) =

∫∞

η
fd|H2

(x)dx, as follows:

Pb =











b

a+ b
exp (−aη) η ≥ 0

a

a+ b

(

1− exp(bη)

)

+
b

a+ b
η ≤ 0

(11)

This completes the derivation of main results for the men-
tioned SLB system.

Comments: We present a quantitative critique of the sug-
gested detector and discuss the practical issues about its
implementation. The optimal test for Swerling-1 targets given
in (4) depends on several parameters including operating SNR
and JNR. Hence, the optimality, in the sense of Neyman-
Pearson, is achieved through the knowledge target and jammer
specific parameters which are not utilized in the classical
Maisel SLB system. Hence, the performance superiority of the
suggested detector (if any) can be attributed to this additional
knowledge. In several applications, it is not possible to reliably
estimate SNR and JNR values on-the-fly and resorting to
classical Maisel structure is unavoidable. Yet, the performance
gap between the the optimal and Maisel structures, in spite of
the unavailable information for the conventional structure, can
be of interest and examined in this study.

In the following section, we present a numerical comparison
of Maisel structure and the optimal detector. It is assumed that
both systems are equipped with an antenna having identical
ω andβ values. Both detectors are adjusted to meet a given
target blanking (false blanking) probability. We would like to
reiterate that the optimal detector uses both SNR and JNR
in the detector design and the threshold calculations depend
on both parameters for the optimal detector. Fig. 3 shows the
dependency of the thresholdη on the JNR value for a practical
operational scenario. It can be noted that the dependence of
η on JNR is quite weak for sufficiently large JNR values, say
for JNR> 15 dB. It should be noted that the Maisel structure
does not have any dependence on JNR for the calculation of
the thresholdF .

Fig. 4 presents the receiver operating characteristics (ROC)
curve for the suggested detector. ROC curve is given for target

having SNR of 5 dB and the associatedPtb andPb values for
different JNR values are given. It can be noted that from this
figure, dependency ofPb on JNR is quite weak for JNR> 15
dB.
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Fig. 3. Dependency ofη on JNR for the suggested detector (Swerling-1
target).
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Fig. 4. Jammer blanking probabilityPb vs target blanking probabilityPtb

of the suggested detector (Swerling-1 target).

III. N UMERICAL COMPARISONSWITH THE MAISEL

STRUCTURE FORSWERLING-1 TARGETS

Setting threshold for a given Ptb and SNR: The
undesired event for a SLB system is the blanking of a target
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(b) Suggested detector

Fig. 5. Target blanking probabilities vs F andη for Maisel and suggested SLB detectors (Swerling-1 target).
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(a) Maisel SLB system (from [3])
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Fig. 6. Pb vs F andPb vs η for the classical and suggested SLB detectors (Swerling-1 target).

presiding in the main-lobe when the jammer not present. Fig.
5 can be utilized to set the threshold values for both detectors
at a givenPtb and fixed SNR. As a practical remark, we would
like to note that SNR value in the threshold calculation should
be selected for the weakest detectable targets, that is for the
targets barely crossing the detection threshold. It can be noted
from this figure that targets having the potential of crossing
the detection threshold with a significant margin (high SNR
targets) have a smaller probability of getting blanked. As aside
note, in Fig. 5(b), JNR= 20 dB is used when constructingQ
matrix of the optimal detector.

Variation of Pb with respect to JNR: The desired event
for a SLB system is the blanking of jamming residing in the
side-lobe. Fig. 6 shows the variation of this probability versus
threshold for different JNR values. This figure can be utilized,

along with Fig. 5, to examine the blanking performance of
the system at a fixed probability of undesired event of false
blanking.

It can be noted from Fig. 6(a) thatF values greater than
β2 = 5 dB results in a significant loss of blanking probability
irrespective of JNR value. This loss is quite expected since
the condition ofF < β2 is violated. In contrast, the change of
Pb with respect toη and JNR is rather smooth for the optimal
detector.

Variation of Pb with respect to JNR for a given
Ptb: Figure 7(a) compares the performance of two systems
at a fixed probability of target blanking. The target blanking
probability is set to 0.01 in Fig. 7(a). The threshold valuesfor
each detector at different SNR values are denoted in the figure
legend.JNR= 20 dB is utilized for the thresholdcalculation
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Fig. 7. Comparison ofPb on JNR for Swerling-1 targets. Parameters:β2
= 5

dB, ω2
= −30 dB

of the optimal detector.
It can be noted from Fig. 7(a) that the Maisel structure

behaves very poorly in two cases shown. Both of these cases
correspond the case of having the thresholdF exceeding or
being very close toβ2. As noted before, these cases are in
violation of the conditionF < β2. The other cases have much
higher blanking probability; but have a poorer performancein
comparison to the optimal detector. It can be noted that the
performance gap gets smaller as the thresholdF of the Maisel
structure gets smaller in comparison toβ2.

Fig. 7(b) presents the result of an identical comparison for

a higher target blanking ofPtb = 0.1. For the givenPtb value,
the problematic cases ofF ≈ β2 occurs at much smaller SNR
values, i.e. SNR≈ 3 dB. It can be noted that the cases for
which the conditionF ≪ β2 is satisfied, the performances of
Maisel structure and the optimal detector are very similar.

IV. OPTIMUM SLB SYSTEM FOR SWERLING-0 TARGETS

AND ITS COMPARISON WITH MAISEL STRUCTURE

Swerling-0 target model for the complex return signalsã
and c̃ given in (1) assumes that the magnitude ofã and c̃
are constant and deterministic, but the phase is uniformly
distributed on(0, 2π).

As in Swerling-1 target model,̃r and s̃ are correlated.
The correlation under different hypotheses is as follows:
E[r̃s̃∗;H1] = ω|ã|2 and E[r̃s̃∗;H2] = β|c̃|2. To obtain the
joint pdfs of r̃ and s̃, we first write the conditional joint
pdf given the phase is deterministic. After that, we integrate
the result with respect to phase over(0, 2π) and obtain joint
pdfs. The ratio of joint pdfs are calculated as in (3) to obtain
the optimum test. Due to space limitation, we include only
resultant LRT which is

d0 =

I0

(

2|c̃|

σ2
|s̃+ βr̃|

)

I0

(

2|ã|

σ2
|s̃+ ωr̃|

)

H2

≷
H1

η0 (12)

whereI0(·) is the modified Bessel function of the first kind.
The test given in (12) is optimum for Swerling-0 target. The

statistic of the test,d0 is analytically difficult to obtain. So we
resort to Monte Carlo method for the performance assessment.
The thresholdη0 is determined by generatingH1 hypothesis
(signal plus noise) and searching the threshold which satisfies
the predetermined false blanking probability(Ptb).

Fig. 8 shows the thresholdη0 dependence on JNR for
several values of SNR. The behaviour ofη0 on JNR is different
when compared with Swerling-1 target. The threshold value
strongly depends on JNR, but is almost independent of SNR
for the values greater than 10 dB.

Fig. 9(a) presents thePb comparison when the false blank-
ing probabilityPtb is set to 0.01. The corresponding threshold
values are shown in figure legend. As in Swerling-1 case,
Maisel structure behaves poorly whenF is not sufficiently
smaller thanβ2. It can be noted that, the performance gap
gets smaller when JNR increases.

Fig. 9(b) shows the identical comparison when the false
blanking probability is set to higher value of 0.05. The
comments about Fig. 7(b) are still applicable.

It can be commented that optimum SLB structure achieves
the high blanking probability at a relatively small JNR values
when compared with Swerling-1 case. This is expected due to
assumption of non-fluctuating target model.

V. CONCLUSION

The goal of this study is to justify the performance of
the conventional Maisel side-lobe blanking structure. To this
aim, an optimal detector is constructed for Swerling-1 and
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Fig. 8. Dependency ofη0 on JNR for the suggested detector (Swerling-0
target) (# of Monte Carlo trials =106).

Swerling-0 target models. The statistics of optimum SLB
detector for Swerling-1 targets is derived analytically. The
optimal detector requires the knowledge of SNR and JNR
values which is typically not known by the radar receiver.
The main goal of this study is to examine the performance
gap between the optimal receiver and Maisel structure in spite
of the non-availability of the additional information for the
optimal receiver.

The numerical results show that the Maisel structure per-
forms in close proximity to the optimal detector when the
operating threshold of Maisel structure (F ) is sufficiently
smaller thanβ2 which is the running assumption for a reliable
operation with the Maisel structure in many applications.

A potential future work is the examination of detector
sensitivity to SNR and JNR values in order to better understand
the implementation feasibility of the optimal system. Another
future work is the study of the optimal SLB system on the
detection and false alarm probability of the overall system.
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